ABDULLAH GUL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE MATERIAL SCIENCE AND MECHANICAL ENGINEERING COURSE DESCRIPTION AND SYLLABUS

Course Name	CODE	SEMESTER	T+L Hour	CREDIT	ECST
Biosensors	MSME 645	Fall-Spring	3+0	3	10

Prerequisite Courses N/A

Course Type	Selective		
Course Language	English		
Course Coordinator	Assistant Prof. Kutay İçöz		
Lecturers	Assistant Prof. Kutay İçöz		
Course Assistants	N/A		
Course Objectives	Learning the fundamentals of Biosensors. Reviewing recent literature and application of the devices to biology and medicine.		
Learning Outcomes	 Learning the fundamentals of Biosensors. Learning the fundamentals of materials used in Biosensors. Learning the fabrication methods of Biosensors. Detailed study of the surface chemistry and functionalization methods. Learning the fundamentals of transduction mechanisms in Biosensors. Learning the fundamentals of microfluidic based Biosensor. Gaining the ability to understand the devices developed for cell and biomolecule sensing. 		
Course Content	 Nano/Micro technology applications for Biosensing Materials and specifications Surface properties Transduction mechanisms Microfluidics Micro/nano biosensors Standard laboratory methods for biosensing Cantilever/Carbon Nanotube Biosensors Target based Biosensing 		

WEEKLY SUBJECTS AND RELATED PRELIMINARY PAGES						
Week	Subjects	Preliminary				
1	Biosensor Fundamentals, market value, examples					
2	Materials: Silicon based, paper based, polymer based biosensors Fabrication techniques: Lithography and light sensitive polymers					
3	Sensing Mechanisms 1: Electrochemical, optical and mechanical etc.	The relevant articles from the literature				
4	Surface Props developed for Biosensing: Chemical and biological receptors, surface coating and surface chemistry	The relevant articles from the literature				
5	Surface Props developed for Biosensing: Micro patterning methods	The relevant articles from the literature				
6	Midterm					
7	Microfluidic Devices for Biosensing	The relevant articles from the literature				
8	Standard laboratory analysis techniques (ELISA, flow cytometry) for Biosensing	The relevant articles from the literature				
9	Immunosensors	The relevant articles from the literature				
10	Cell /Protein/DNA detection	The relevant articles from the literature				
11	Midterm					
12	Bacteria/Virus detection	The relevant articles from the literature				

13	Novel Biosensors 1	The relevant articles from the literature
14	Novel Biosensors 2	The relevant articles from the literature
15	Novel Biosensors 3	The relevant articles from the literature
16	Final Exam	

RESOURCES	
Course Notes	Lecture Slides
Other Resources	Course Textbook: "Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems" by Mohammed Zourob, Sauna Elwary, Anthony P.F. Turner.

MATERIAL SHARING				
Documents	Lecture notes, slides			
Homework	Students will be given one homework each week			
Exams	2 Midterms and 1 Final Exam			

RATING SYSTEM						
SEMESTER WORKS	NUMBER	CONTRIBUTION				
Midterm	2	40				
Homework	10	20				
TOTAL	10	10				
Success Rate of Semester		70				
Success Rate of Final		70				
TOTAL	1	30				

Course Category	
Basic Sciences and Mathematics	%50
Engineering Sciences	%50
Social Sciences	%0

RE	RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS					
	Program Qualifications		Contribution Level			
NO			2	3	4	5
1	Accessing knowledge, evaluating and interpreting information by doing scientific research in the field of Materials Science and Mechanical Engineering					x
2	Ability to use science and engineering knowledge for development of new methods in Materials Science and Mechanical Engineering					x
3	To be able to understand and analyze materials by using basic knowledge on Materials Science and Mechanical Engineering					x
4	Design and implement analytical, modeling and experimental research					x
5	Solve and interpret the problems encountered in experimental research					x
6	Considering scientific and ethical values during the collection and interpretation of data				x	
7	Integrating knowledge of different disciplines with the help of scientific methods, and completion and implementation of scientific knowledge using data				x	
8	To gain leadership ability and responsibility in disciplinary and interdisciplinary team works					x
9	To be able to contribute to the solution of social, scientific and ethical problems encountered in the field of Materials Science and Mechanical Engineering					x
10	To be able to define, interpret and create new information about the interactions between various discipline of Materials Science and Mechanical Engineering					x

*From 1 to 5, it increasingly goes.

Г

ECTS / WORK-LOAD TABLE			
Activities	Activities	Duration	Total

		(Hour)	(Work-Load)
Course Duration (Including exam week: 16x total course hour)	16	3	48
Out of Class Exercise Time (Pre-study, reinforcement)	16	8	128
Searching on Internet, library study	16	3	48
Presentation	5	3	15
Homework	10	3	30
Midterms	2	15	30
Final	1	15	15
Total Work-Load			314
Total Work-Load / 30			314/30
Course ECTS Credit			10